WP1066 suppresses macrophage cell death induced by inflammasome agonists independently of its inhibitory effect on STAT3
نویسندگان
چکیده
The compound WP1066 was originally synthesized by modifying the structure of AG490, which inhibits the activation of signal transducer and activator of transcription 3 (STAT3) by directly targeting Janus kinases (JAKs). WP1066 exhibits stronger anti-cancer activity than AG490 against malignant glioma and other cancer cells and is regarded as a promising therapeutic agent. By screening a small library of target-known compounds, we identified WP1066 as an inhibitor of macrophage cell death induced by agonists of the NLRP3 inflammasome, an intracellular protein complex required for the processing of the proinflammatory cytokine interleukin (IL)-1β. WP1066 strongly inhibited cell death as well as extracellular release of IL-1β induced by inflammasome agonists in mouse peritoneal exudate cells and human leukemia monocytic THP-1 cells that were differentiated into macrophagic cells by treatment with PMA. However, inflammasome agonists did not increase STAT3 phosphorylation, and another JAK inhibitor, ruxolitinib, did not inhibit cell death, although it strongly inhibited basal STAT3 phosphorylation. Thus, WP1066 appears to suppress macrophage cell death independently of its inhibitory effect on STAT3. In contrast, WP1066 itself induced the death of undifferentiated THP-1 cells, suggesting that WP1066 differentially modulates cell death in a context-dependent manner. Consistent with previous findings, WP1066 induced the death of human glioma A172 and T98G cells. However, neither ruxolitinib nor AG490, the former of which completely suppressed STAT3 phosphorylation, induced the death of these glioma cells. These results suggest that WP1066 targets cell death-modulating molecules other than those involved in JAK-STAT3 signaling.
منابع مشابه
STAT3 inhibitor WP1066 attenuates miRNA-21 to suppress human oral squamous cell carcinoma growth in vitro and in vivo.
Abnormalities in signal transducer and activator of transcription 3 (STAT3) are involved in the oncogenesis of oral squamous cell carcinoma (OSCC). MicroRNA-21 (miR-21) is an important gene expression regulator to OSCC. miR-21 induction by STAT3 has been reported in multiple human cancers. In the present study, we found that STAT3 (-/p) expression was positively correlated with miR-21 in 60 OSC...
متن کاملWP1066 Sensitizes Oral Squamous Cell Carcinoma Cells to Cisplatin by Targeting STAT3/miR-21 axis
Accumulating evidence reveals that activation of STAT3 and miR-21 contributes to chemoresistance in multiple tumors. We examined the expression of STAT3 and miR-21 in 43 oral squamous cell carcinoma (OSCC) tumors and classified them into cisplatin sensitive or resistant group. Tca8113 and Tca8113/DDP cells were treated with cisplatin (DDP), WP1066 (STAT3 inhibitor) or in combination. MTT, colon...
متن کاملFL3, a Synthetic Flavagline and Ligand of Prohibitins, Protects Cardiomyocytes via STAT3 from Doxorubicin Toxicity
AIMS The clinical use of doxorubicin for the treatment of cancer is limited by its cardiotoxicity. Flavaglines are natural products that have both potent anticancer and cardioprotective properties. A synthetic analog of flavaglines, FL3, efficiently protects mice from the cardiotoxicity of doxorubicin. The mechanism underlying this cardioprotective effect has yet to be elucidated. METHODS AND...
متن کاملStat3 orchestrates interaction between endothelial and tumor cells and inhibition of Stat3 suppresses brain metastasis of breast cancer cells
Brain metastasis is a major cause of morbidity and mortality in patients with breast cancer. Our previous studies indicated that Stat3 plays an important role in brain metastasis. Here, we present evidence that Stat3 functions at the level of the microenvironment of brain metastases. Stat3 controlled constitutive and inducible VEGFR2 expression in tumor-associated brain endothelial cells. Furth...
متن کاملSelective Inhibitory Effect of Adenosine A1 Receptor Agonists on the Proliferation of Human Tumor Cell Lines
Background: In this study, the effects of three structural analogues of adenosine upon proliferation of human tumor cells were investigated. Previous research showed a cytotoxic effect of adenosine via A3 receptor and A1 receptor and sometimes this effect was receptor independent. The researches showed a differential cytotoxic effect of adenosine and its A3 agonists on cancerous cells, while ot...
متن کامل